Related Work

Human-Centered Autonomous Agents

Adjustable Autonomy

Autonomous Control Systems
Mixed-Initiative Planning
Agent Assistants
User Interfaces/Human-Computer Interaction
Robotic Tele-operation
User Modeling/Tutoring
Machine Learning
Plan Recognition & Explanation
Distributed Artificial Intelligence
Model-based Reasoning

Distributed Artificial Intelligence

Related Work
Autonomous Control Systems

- Brings to table:
 - autonomous control
 - integration of continuous and symbolic
 - task contexts and off-nominal operation

- Lacks:
 - machinery for human interaction
 - explanation facilities
 - history of operations

- Citations
 - Muscettola, et al 1998
 - Bonasso, et al 1997
Mixed-Initiative Planning

- Brings to table:
 - mechanisms for human involvement in plan generation
 - language for explaining choices to human
 - look-ahead search of options and consequences

- Lacks
 - execution of plans

- Citations
 - Ferguson, et al 1996
 - Burstein and McDermott, 1996
 - Pollack and Hory, 1999
 - Myers, 1996
Agent Assistants

Brings to table:
- close human/computer interaction
- studies of how humans and autonomous systems can work together safely
- continuous sensor reasoning

Lacks
- fully autonomous capabilities—doesn’t take charge
- generalizable results—domain specific

Citations
- Chambers and Nagel, 1985
- Decker and Lesser, 1995
- Jorgensen, 1997
Human-Computer Interaction

Brings to table:
- careful studies of how to present information to humans
- careful studies of how to make commanding easier and less error-prone
- simulation tools for modeling work practices

Lacks
- autonomous control

Citations
- Roth, et al 1997
- Schreckenghost and Malin, 1991
- Gould, 1998
- Clancey, et al 1998
- Gertz, Stewart, and Khosla, 1993
Robotic Teleoperation

- Brings to table:
 - continuous control
 - shared control (human and robot each controlling different things)
 - studies in time lags between action and control
 - virtual presence and user interfaces

- Lacks
 - autonomous control
 - history of system decisions

- Citations
 - Sheridan, 1989, 1992
 - Craik, 1947
 - Hayati and Venkataraman, 1989
 - Lee, 1993
User Modeling/Tutoring

- Brings to table:
 - psychological studies about interacting with humans
 - mechanism for presenting appropriate information to human
 - internal models of expected human behavior

- Lacks:
 - control mechanisms

- Citations
Machine Learning

- Brings to table:
 - automatic adjustments of control system
 - learning user behaviors and desires
 - adaptations to different humans and situations

- Lacks:
 - verifiable control strategies
 - observability
 - ability to change autonomy level

- Citations
 - Samuel, 1959
 - Holland, 1992
 - Mitchell, 1997
 - Grefenstette, et al 1990
Plan Recognition and Explanation

- Brings to table:
 - mechanisms for predicting user actions
 - mechanisms for explaining system activities

- Lacks
 - autonomous control facilities

- Citations
 - Huber, et al 1994
 - Kantz and Allen, 1986
 - Canamero, et al 1994
 - Lesh, et al 1999
 - Stein, 1988
Distributed AI

- Brings to table:
 - reasoning about multiple (including human) agents
 - distributing tasks amongst agents
 - inter-agent communication
 - resource allocation
- Lacks
 - focus on human to understand and command control system
- Citations
 - Durfee, 1999
 - Tambe, et al 1999
 - Weiss (ed), 2000
Model-based Reasoning

- Brings to table:
 - qualitative reasoning that is intuitive for humans
 - fault diagnosis and recovery
 - explanation

- Lacks
 - autonomous control in real-time and continuous domains
 - human interface and input

- Citations
 - Williams, 1996
 - Kuipers, 1994
 - Jonsson, et al 2000
Adjustable Autonomy

- **Lacks**
 - full spectrum of control
 - verification
 - understanding

- **Citations**
 - Barber, et al 2000
 - Bonasso, et al 1997
 - Dorais, et al 1998
 - Kortenkamp, et al 2000
 - Musliner and Krebsbach, 1999
 - Thurman, et al 1997