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Spacecrafts generate huge amounts of data. A significant challenge for autonomous
control systems and human operators is ensuring that the right data (and combinations
of data) are available at the right time for control and decision-making and ensuring that
the data is at the right abstraction level. In this paper, we describe a data abstraction
architecture that provides a canonical way to assemble and interact with data abstractions.
We have developed an open, flexible toolkit that allows end users to build data abstraction
networks. Two use cases were successfully tested against a Lunar habitat simulation,
demonstrating that high level state information can be generated by the data abstraction
architecture and used by a high level controller. Our approach improves the process of
both control and monitoring of space systems by separating controls and displays from
data abstraction.

I. Introduction

Modern space systems such as satellites, human spacecraft, planetary probes and space robots are highly
sensored and generate large amounts of data. For this data to be useful to humans monitoring these systems
and to automated algorithms controlling these systems it will need to be converted into more abstract data.
This abstracted data will reflect the trends, states, and characteristics of the systems and their environments.
Currently this data abstraction process is manual, ad hoc, and intermingled with control systems. It is
manual in the sense that either humans do the abstraction in their heads or the data abstraction is done by
hand-coding computer programs for each data item. It is ad hoc in the sense that each data abstraction is
developed on its own with no representation of how it relates to the tasks being performed or to other data
abstractions. It is intermingled with the control systems in that data abstractions are irreducible and difficult
for other programs, like displays and analysis tools, to access. In this paper we present the Data Abstraction
Architecture for Spacecraft Autonomy (DAASA) that allows engineers to design software processes that
iteratively convert spacecraft data into higher and higher levels of abstraction. DAASA also formalizes the
relationships between data and control and the relationships between the data themselves.

II. Related Work

Several autonomous control architectures had explicit data abstraction. One clear example is the Su-
pervenience architecture.1 The architecture consisted of communicating levels in which lower levels pass
data about the world to higher levels. At the same time higher levels pass goals down to lower levels. It is
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implemented using a blackboard architecture at each level. Each level also contains its own uniform data
representation. The Reactive Action Packages System (RAPS)2 had its own data abstraction component
that was added in the early 90s3 . This functioned more as a conceptual network in which data could
be represented at many levels. It was primarily used as a way to communicate with humans. RAPS also
led to a pattern recognition architecture called the Complex Event Recognition Architecture (CERA).3

It was primarly concerned with expressing parsers that would recognize complex patterns in streams of
data. The Open System Architecture for Condition Based Maintenance organization (OSA-CBM) provides
a hierarchical breakdown of information for use in condition-based maintenance. It denes software modules,
data structures, and the interfaces and protocols between the modules that make up a system. It encompasses
a range of functions from sensing hardware through diagnosis and prognosis all the way to presentation of
the diagnosis with recommended maintenance actions. It has its own interface language called the Abstract
Interface Denition Language (AIDL), which is very similar to a CORBA IDL. In fact, translators from AIDL
to IDL exist. This architecture is focused on system health management and maintenance and does not
support more traditional autonomous control activities. However, it is being accepted more and more widely
in industry and government.

III. Overview of DAASA

DAASA allows engineers to design software processes (called data abstraction networks) that iteratively
convert sensor data into higher and higher levels of abstraction. DAASA is a series of mathematical or
logical transformations of sensor data to provide appropriate abstractions that can be used on-board to
control the vehicle or that can be transmitted off-board to a control station for human monitoring. DAASA
formalizes the relationships between data and control and the relationships between the data themselves.
Thus, DAASA provides a canonical way to assemble and interact with data abstraction. Similar to control
architectures (e.g., 3T4 and Remote Agent5) DAASA provides a tool-box of components and connections
that allows engineers to build and maintain data abstraction systems.

III.A. DAASA Components

DAASA consists of several integrated components and representations. These include:

Data events Define the data upon which DAASA operates, including telemetry, derived data, symbols and
triggers. Events are heterogeneous, hierarchical, multi-value messages and may occur asynchronously.
DAASA defines an XML schema for data events.

Data source The producer of data events in DAASA. This generator may include either raw telemetry
data events generated by hardware sensors or preprocessed data events from a low-level controller or
other abstraction architectures. Typically events are generated on change of value or from sampling of
the underlying hardware.

Data sink The consumer of a data event outputs from the DAASA. This receiver may include high-level
control systems, crew displays, logging or maintenance systems, or other abstraction architectures.

Data abstractors Define either a transformation, caching, or reorganization of data events, typically for
a more abstract or specialized form. Abstractors consume data events coming from data sources or
other abstractors and produce events to sinks or other abstractors.

Sensor event abstraction language (SEAL) An XML grammar which defines the data abstractors, the
abstractor’s message handling operations, and the directed graph connecting the abstractors.

Data abstraction reasoning engine (DARE) Instantiates a SEAL file in a computer program that is
connected to the data sources and sinks, runs in real time, and produces events for higher-level control
systems, system operators or crew.

Development environment An end-user oriented software tool to aid in the construction, debugging and
viewing of SEAL files.
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Figure 1. General overview of the Data Abstraction Architecture for Spacecraft Autonomy

Taken together these components provide a mechanism for representing and accessing the data necessary to
monitor and control Constellation vehicles, habitats and robots. Figure III.A shows a high-level overview of
how DAASA integrates with other space vehicle systems. The physical system in the lower right provides
raw sensor telemetry into the Data Abstraction Reasoning Engine (DARE). Low level controllers also use
this same, unabstracted data and can produce their own events for DARE. These two systems are data
sources. The SEAL editor creates an XML file that defines the data abstraction network, which is read in
by DARE. The abstracted data can be used by displays intended for human consumption or by higher-level
controllers. Both are data sinks.

III.B. Data Abstractors

There are a large number of data abstraction algorithms that might be useful to a DAASA designer. These
include:

• Unit transformations that convert an input value in an event into another input value.

• Rate computations that analyze the rate of change of an input value in an event.

• Outliers that take a set of homogenous values in an event and use interpercentile ranges to find values
that are different from the others.

• Equivalences take a set of homogeneous values in an event and creates a new boolean value of true
if the values are the same, false if not.

• Samplers are any abstractor that can be used to accumulate a buffer of discrete messages over a
defined observation period and reduce them to a single message. Example sample abstractors may
include ‘last value,’ ‘first value,’ and ‘mean.’

• Accumulators collect events from a single event stream over a defined observation period (in terms of
time, message number, or an external signal) and then releases a single output message that contains
an ordered set of the messages collected.

• Conditional Propogators perform a test on a value in a message and then passes on the message if
that test resolves to true. Tests may be logical or arithmetic.

• Propagate on Changers takes an input value in a message and fires the same message if the value
changes.
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• Temporal Alignments collect a single message from each of multiple input streams and outputs a
single new message that contains the set of collected messages. The abstractor will support different
triggering rules including “all new events received,” “one new event received,” or “new event from
input X received.” As, by definition, event streams work at different rates and send events in non-
deterministic orders, the abstractor must have buffer management rules that determine how to handle
the case when multiple events arrive on one input while waiting for an event on a different input. These
rules are similar to the Sampler abstractors above, and will include “last value,” “first value,” and
“mean”.

• Categorical Binners reduce real valued events into symbolic categories. For example a temperature
input could be reduced to a “high”, “medium”, or ‘low” output event by a categorical binner.

• Reducing Abstractors (Mean, Median, Count, Sum, Last, First, Max, Min): take a homo-
geneous set of data elements (as assembled by an accumulator) and reduces the set to a single element.
In the cases of mean, sum, and count, this value of this element is computed from the homogeneous
set. In the case of last, first, max, min, and median, it is a member of the set.

• Trims: take an input of a single message and outputs a new message with fewer data elements as
selected by the user.

• Mathematical functions that allow for specifying a math expression (e.g., input1 + input2) that is
computed on the inputs in the event.

• Logical functions that allow for specifying a logical expression (e.g., input1∨input2) that is computed
on the inputs in an event.

We have build a subset of these to implement the use cases described in Section VI. A generic DARE API
allows for easy creation of new abstractors by experienced programmers.

IV. Sensor Event Abstraction Language (SEAL)

The Sensor Event Abstraction Language (SEAL) is an XML grammar that defines data manipulation
and message handling operators, enabling the description of sophisticated transformations on event-based
telemetry data. The SEAL syntax and semantics are intended to support the computational requirements of
NASA telemetry and telemetry management processes and align to the conceptual model of those processes
held by expert NASA flight control engineers. Finally, the language is intended to support rapid visual
development and inspection of data transformation by skilled engineers who are typically trained in disciplines
other than software engineering.

IV.A. Description

Typical data transformation programming environments, such as discrete event simulations, circuit design
simulators, spreadsheets, and test systems, structure data transformation using a graph representation. The
standard version of graph semantics adopted by these environments typically makes a number of assumptions
about node and edge structure of the graph, specifically that nodes represent information processing functions
that input a single type of information and output a single value. The edge represents the current output of
the node. The placing of a new value on an input edge causes the adjacent nodes to fire, causing an update
on their output edges. This in turn causes new node firings until the graph reaches quiescence. In such a
graph, where all edges represent a current value, the graph itself can be seen as having a global memory state.
This structure works fine in environments where input singles are single-data type, and where data delivery
is relatively guaranteed. Neither of these constraints is appropriate in the telemetry environment where
messages often have composite structure and can have significant latency and drop effects. This structure
also does not easily support the annotation of node-outputs with meta-data such as error conditions, pedigree
descriptions, or uncertainty values.

SEAL, while also using a graph-based structure, draws on an event-based message passing semantics
similar to that found in enterprise messaging systems.6 In this semantics, an edge represents the path a
message may follow, but not the message itself. Along these edges, there are two classes of nodes: message-
element operators, which transform data elements in a message into a new data element appended to the
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message, and message-envelope operators, which manipulate message structure to route or merge messages or
to remove data elements from a message. In this semantics, a message is a complex memory structure while
the overall graph has no persistent state. As messages traverse the graph they pick up new data elements,
building up not only an output value but a processing history. This conceptually clarifies and computationally
simplifies standard telemetry processes such as sampling and temporal alignment (to manage data over/under
runs). Sampling, for example, can be instantiated as a message-envelope operator, accumulating a set of
messages over a period of time into a single message, followed by message-data operator (e.g. mean),
that reduces data values in the individual message sections into a single data value. Temporally aligning
temperature readings from different thermal sensors in a spacecraft chamber is a matter of linking each of
their message-paths to a message-envelop operator which groups them by time range. This message-passing
semantics is well suited to the NASA telemetry environment, matching how flight controllers understand
telemetry processing and the kinds of configurations they would expect to perform. It also allows a number
of computational benefits including easy distributed processing and load-balancing due to the lack of global
memory and easy integration with messaging systems. Finally, it provides an excellent basis for feeding data
into high-level controllers due to its ability to output both raw instrument data and processed or symbolized
information in the same message.

Figure 2. Quiescence Filter

This basis allows for more complicated structures to be built up. For example, a Quiescence Filter only
passes a value out the far side if that value has remained with tolerances for a prescribed time interval. Fig-
ure 2 shows one possible implementation of a Quiescence Filter. First an alignment operator and equivalence
operator pair gathers a set of messages together (from different data sources) and evaluates them to see if
they are within tolerance. Second, the message, which contains all the original messages and the output of
the equivalence test, is passed to another accumulator operator and equivalence operator pair. This pair
compares whether the group that is with-in tolerance has remained in tolerance for the prescribed amount
of time. Not that this example makes strategic use of both message-envelop operators (temporal alignment
and accumulation) and a simple message-data operator (equivalence) to instantiate the more complex notion
of quiescence.

The formal specification of the language semantics is a specialization and XML rendering of the general
Set-Function (SF) syntax described by Bertziss.7 Our version streamlines the general SF grammar, reducing
expressiveness in favor of non-software engineer programmability. Where SF allows the description of rich
preconditions to trigger each processing event we restrict this to a simple message existence / location test,
requiring preconditions that discriminate based on message content to be constructed in a separate processing
event. Like SF we divide event processing into two functions, one that reduces a data set to an output value
(or set of values) and one that positions the output of the first function at some location in the output
message. We support the visual selection of set functions by selection of message-data or message-envelope
operator objects in the visual editor and the linkages of these functions to event-preconditions by visually
linking abstractor objects via message-paths. Currently the function for placing data output in a message
object is not handled visually, but through the textual specification of a message path. These features ensure
that, like SF, SEAL is a general language that can construct a large set of possible data transformation graphs
and do so in a manner that is primarily visual.
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IV.B. SEAL Visual Editing Environment

Figure 3. SEAL visual editing environment

The SEAL visual editing environment (shown in Figure 3) has been developed in Eclipse, a Java open
source editing platform and provides the expected basic functionality including drag and drop placement
of operators, automatic routing of message-path lines, local save and load and static validation of SEAL
expressions, connection with the DARE engine for run-time debugging including remote start and stop,
variable-watches, and breakpoints. To support NASA telemetry applications, the editor natively supports
the XML Telemetric and Command Exchange (XTCE) standard descriptions and identifiers for telemetry
data sources. To support the event-passing semantics of the language, we implemented an algorithm that
computes the current message structure at any point along the message graph. This algorithm enables users
to view and easily manipulate the message structure when assigning message-data operators to data values
in a message and when assigning message data-operator output to specific locations in a message.

V. Data Abstraction Reasoning Engine (DARE)

The Data Abstraction Reasoning Engine or DARE, is a distributed, message based software program
that takes as input a SEAL file, instantiates the listed abstractors, connects the abstractors to each other,
the sources, and the sinks. When DARE is finished initializing, data sources are producing events from live
data, abstractors are computing on those generated events, and sinks are consuming the resultant events.

V.A. Implementation

Sinks are implemented as formalized end-points of the abstraction network, though third party applications
may access any of the intermediate events. These intermediate events are provided externally to allow
transparency to DARE’s event processing. DARE is implemented in Java using ActiveMQ as the messaging
broker. Messages passed between source, sinks, and abstractors are accessible using a variety of protocols
including JMS, JMX, Openwire, REST, XMMP, and CORBA. DARE can be remotely debugged using the
SEAL visual editing environment using JMX.
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As previously noted, data events passed between abstractors, sinks, and sources are heterogeneous,
hierarchical, multi-value messages. To support this, DARE implements events as messages with any number
of properties. A message property is a name/value pair where the value may be an atomic value (string,
number, etc), an ordered list of values, or another message. In a single message, each property is unique and
may appear only once.

Consider an output message from an abstractor of type Counter called SensorCounter:

{
sensors: [
{

name: cabin pressure sensor,
units: kPA,
value: 101

},
{

name: airlock pressure sensor,
units: kPA,
value: 85

}
count: 2

}

In this example, there are two top level properties: sensors and count. Count has a simple value of the
integer 2. Sensors has the complex value of a list, each element of the list containing three more properties:
name, units, and value.

V.B. SEAL Addressing Scheme

To do any work on input messages, DARE abstractors need an addressing scheme to find the data in the
message on which to process. DARE uniquely address a property in a message using the following:

Source abstractor: This is the name of the source abstractor

Property path: A sequence of message property names.

List indexing: For list values, a unique, zero-based integer indicating the index of the desired value.

Aggregate Operator: For list values, indicates all values of the list, rather than a single value.

These five concepts taken together uniquely address the field of a message coming from a particular abstractor
output. We encode this address as follows:

{<abstractor name>}.<property path>

The first two elements (abstractor name and first property name) are always required. Consider another
abstractor of type Average called SensorAverage. If SensorAverage wanted to compute a mean on the
received message, it would use the following two input addresses:

{SensorCounter}.sensors[0].value, {SensorCounter}.sensors[1].value

This would locate the two values 28 and 101 respectively. We could also have SensorAverage use the list
aggregate operator to find its values thusly:

{SensorCounter}.sensors[].value

Note the empty “[]” on contacts. This indicates we would like to operate on all values in the contacts list.
To create an output, the same addressing scheme is used, except the list aggregate operator is disallowed.
For example, SensorAverage needs a new property to place the result of its processing. The output address:

{SensorAverage}.average
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would create a new property in the message called “average” and place the average of the sensor values
therein. The output message of SensorAverage would look like this:

{
sensors: [
{

name: cabin pressure sensor,
units: kPA,
value: 28

},
{

name: airlock pressure sensor,
units: kPA,
value: 101

}
count: 2
average: 64.5

}

VI. Use Cases

We examined two separate use cases for DAASA. Both use cases received sensor data from a life support
simulation called BioSim. BioSim is a dynamic system simulation tool developed by NASA Johnson Space
Center over the past decade.8 Mathematical models for typical components found in various life support
systems are fully integrated and highly congurable. Simulation progresses in hourly time increments, with
each unit process producing and consuming various resources in designated stores. An XML conguration file
containing the design of the system initializes the simulation including settings such as random failure and
stochastic performance. BioSim has been successfully used and veried in many life support optimal design
applications, including reliability analysis, control system testing, and power system design verification. The
configuration chosen for the use cases is based on a lunar mission containing one cabin, one crew member,
an airlock, and abundant food, water, and oxygen.

VI.A. Detecting a Malfunctioning Sensor

In the first use case, we created an abstraction network to monitor five sensors that measured the carbon
dioxide in the crew cabin. Nominally, the sensors should all be reporting the same value (aside from a bit of
noise). However, we planned to fail one sensor and have DAASA report the failing sensor immediately. The
network we created is shown in Figure 4.

First, each carbon dioxide sensor is sampled to 1Hz. This means each Sampler abstractor is generating
one event every 1 second. These Sampler events are all consumed by the Temporal Alignment abstractor.
This abstractor was configured to collect the Sampler events until one event from each Sampler had arrived.
When this happens, a new event was published by Temporal Alignment containing the list of events from each
Sampler. The Outliers abstractor would process this list, looking at each sensor reading for an anomalous
sensor reading. If one is found, it is added to a list of outliers. If not, an empty list is passed. The Outliers
fires a new message as soon as it’s able to process its input. Count takes the event from Outliers and
determines the length of the outliers list in its input event. Count fires a new event as soon as its able to
determine this, which is sent to the Propagate On Change abstractor. If the count value in the message has
changed, a new event is sent to the display. If not, Propagate On Change discards the event. To implement
this network, we started with the SEAL editor as shown in Figure 5. Figure 6 shows the sensor values and
the event detected by DARE.

VI.B. Controlling an Airlock

For the second use case, we created an abstraction network that was used by a high-level controller to manage
an airlock for an EVA. The controller uses DARE to signal it when high-level goals have been accomplished.
The procedure for readying the airlock for EVA is as follows:
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Figure 4. A data abstraction network for detecting a carbon dioxide sensor failure.

Figure 5. The carbon dioxide sensor failure network being built in the SEAL editor.
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Figure 6. Graph of events and data during the sensor failure

1. Get the airlock’s total pressure and oxygen level to NORMAL

2. Get the oxygen level to PREBREATHE

3. Wait three hours

4. Reduce the total pressure to VACUUM

The data abstraction network determined the airlock state (e.g., NORMAL, PREBREATH, VACUUM, etc.)
by sampling the total airlock pressure and the partial pressure of oxygen. It then used several categorical
binners to output a symbolic state. A quiescence abstractor was used to ensure that the system was in a
stable state before the high-level controller took another action. The high-level controller adjusted actuators
in BioSim to accomplish goals and used outputs from DARE for state estimation. In Figure 7 shows the
various states the airlock undergoes in readying for EVA and how they correspond to the total airlock
pressure and the partial pressure of oxygen.

VII. Future work

Our next steps include adding the ability to create composite abstractors, that is, to be able to build
abstractors of abstractors. This will make it significantly easier to build complicated abstraction networks.
We are also planning to connect the data abstraction architecture to a real telemetry stream coming from a
NASA vehicle (either live or recorded).

In the future we plan on formalizing SEAL language semantics relative to both concurrent programming
languages such as Hoares Communicating Sequential Processes9 visual process descriptions such as Berztiss
SF.7 We also plan to revisite SEAL syntax to improve our ability to compose larger abstraction blocks from
primative operators and to improve the temporal model used by the primative operators to cover a wider
set of NASA telemetry management problems.

We are exploring uses of the data abstraction architecture in NASA’s Mission Control Center (MCC).
The current method of doing data abstraction in mission operations is to write special software called
“computations” (or “comps”) that take in a few values of raw telemetry and create a new telemetry value
that is added to the telemetry stream. Comps are not an ideal solution for several reasons. First, they require
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Figure 7. Graph of events and data during the airlock’s readying for EVA

software programming skills on the part of the operator (or reliance upon software programmers). Second,
there is often a significant delay between recognizing the need for a comp and its instantiation. Finally,
comps only convert numeric values into other numeric values and only occur at the lowest level of the data
stream. This last drawback prevents the creation of higher and higher levels of data abstraction that all feed
one another. Our approach improves the process by allowing “comps” to be built and evaluated on-the-fly
and in a formal manner. We are integrating our software with NASA’s Mission Control Technologies (MCT)
program, which is developing the next generation of MCC displays.10

VIII. Conclusions

We have designed and implemented a prototype data abstraction architecture and used it in several simple
scenarios. The data abstraction architecture and its associated SEAL grammar formalizes the transformation
of data from raw sensory telemetry to higher-level data. Such abstractions are critical in monitoring and
controlling complicated space systems. By standardizing the representations and processes we are creating a
toolkit that engineers can use to build data abstractions. Initial conversations with NASA flight controllers
and control engineers has revealed a growing need for architectures such as the one presented in this paper.
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